qcheatsheet

Basic operation

  • \(\left| \Psi \right> = \alpha \left| 0 \right> + \beta \left| 1 \right>\)
  • \(\left| \Psi \right> = cos(\frac{\theta}{2}) \left| 0 \right> + e^{i\phi} sin(\frac{\theta}{2}) \left| 1 \right>\)
  • \(\left| + \right> = \frac{1}{\sqrt{2}} (\left| 0 \right> + \left| 1 \right>)\)
  • \(\left| - \right> = \frac{1}{\sqrt{2}} (\left| 0 \right> - \left| 1 \right>)\)

QGates

PauliX - NOT - \(\sigma_x\)

  • Apply a 180º rotation around X axis
  • swap α and β probabilities and keep the same phase ϕ.
  • Effect on base:
$$ \left< \sigma_x | 0 \right> = \left| 1 \right> \\ \left< \sigma_x | 1 \right> = \left| 0 \right> $$
  • Matrix:
$$ \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} $$

PauliY - \(\sigma_y\)

  • Apply a 180º rotation around Y axis
  • Swap α and β probabilities and shift the phase ϕ.
  • Effect on base
$$ \begin{align} &\left< \sigma_y | 0 \right> = i\left| 1 \right> \\ &\left< \sigma_y | 1 \right> = -i\left| 0 \right> \end{align} $$
  • Matrix
$$ \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} $$

PauliZ - \(\sigma_z\)

  • Apply a 180º rotation around Z axis
  • Keep α and β probabilities and flip the phase ϕ.
  • Effect on base:
$$ \begin{align} &\left< \sigma_z | 0 \right> = \left| 0 \right> \\ &\left< \sigma_z | 1 \right> = -\left| 1 \right> \end{align} $$
  • Matrix
$$ \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} $$

Hadamard - \(H\)

  • Apply a 90º rotation around the Y-axis, followed by a 180º rotation around the X-axis
  • Effect on base:
$$ \begin{align} &\left< H | 0 \right> = \frac{1}{\sqrt{2}} ( \left| 0 \right> + \left| 1 \right>) = \left| + \right>\\ &\left< H | 1 \right> = \frac{1}{\sqrt{2}} ( \left| 0 \right> - \left| 1 \right>) = \left| - \right>\\ \end{align} $$
  • Matrix:
$$ \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} $$

Tensor product - \(\otimes\)

  • \(\left| a b \right> = \left| a \right> \otimes \left| b \right>\)
  • \(\lambda \left| ab \right> = \lambda \left| a \right> \otimes \left| b \right> = \left| a \right> \otimes \lambda \left| b \right>\)
  • \((\left| a \right> + \left| b \right>) \otimes \left| c \right> = \left| a \right> \otimes \left| c \right> + \left| b \right> \otimes \left| c \right> = \left| a c \right> + \left| b c \right>\)